

Comics

Comics is a webcomics aggregator. Out of the box it can crawl and archive
about two hundred comics every day. The comics are made available through an
easy to use web interface were users can build personalized collections of
their favorite comics, and then read them on the site or using a feed reader.

Adding a new comic to your installation requires only the addition of a single
Python file with some metadata and a few lines of code. To make crawler
development easy, Comics comes with both documentation and powerful APIs for
crawling web sites and feeds.

Project resources

	Source code [https://github.com/jodal/comics]

	Releases [https://github.com/jodal/comics/releases]

	Issue tracker [https://github.com/jodal/comics/issues]

	Contributors [https://github.com/jodal/comics/graphs/contributors]

Setup

	Installation
	Get release

	Software requirements

	Bootstrapping
	Create database

	Create first user

	Add comics

	Get comic releases

	Development web server

	More options

	Deployment
	Database

	Example .env

	Example Gunicorn setup

	Example Nginx vhost

	Collecting static files

	Example cronjob

Reference

	Creating crawlers
	A crawler example

	The ComicData class fields

	The Crawler class fields

	The Crawler.crawl() method

	LxmlParser – Parsing web pages and HTML

	FeedParser – Parsing feeds

	Testing your new crawler

	Submitting your new crawler for inclusion in Comics

	Web API
	Authentication

	Response format

	Pagination

	Resources

	Data model
	Database migrations

	Updating diagram

	Development environment
	Testing

	Code formatting

	Linting

	Run it all

Installation

First of all, Comics is just a Django [https://www.djangoproject.com/]
application. Thus, if there are details not outlined in Comics’ own docs,
you’ll probably find the answer in Django’s docs. For example, database
settings are mentioned on this page, but no details are given, as we’re just
talking about Django’s database settings. Django got better docs for their
database settings than we could ever write, so please refer to Django’s docs.

Get release

You can get hold of Comics in two ways:

	Download the lastest release from https://github.com/jodal/comics/releases.

	Clone the Git repository. You can do so by running:

git clone https://github.com/jodal/comics.git

You’ll then have the latest development snapshot in the main branch:

cd comics/

If you want to run a specific release, they are available as tags in the
Git repository. If you checkout a tag name, you’ll have exactly the same as
you find in the release archives:

git tag -l
git checkout v4.0.0

Software requirements

First of all, you need Python 3.7 or newer.

It is recommended to create a virtualenv to isolate the dependencies from
other applications on the same system:

cd comics/
python3 -m venv .venv

Every time you want to use the virtualenv, it must be activated:

source .venv/bin/activate

If you make use of a virtualenv for a real deployment, you’ll also need to make
sure that the app server and the cronjob activate the virtualenv.

Minimum dependencies

The absolute minimum requirements for getting Comics up and running can be
installed with:

python3 -m pip install .

Optional dependencies for real deployments

To deploy Comics, you need a WSGI server. There are several options, but we
tend to use Gunicorn. To install it, run:

python -m pip install ".[server]"

By default, Comics is configured to use an SQLite database. While SQLite is
good enough for local development, we recommend PostgreSQL when running
Comics long-term. To install the extra dependencies required to use
PostgreSQL as the database, run:

python3 -m pip install ".[pgsql]"

Comics does not require a cache, but responses are significantly faster with
a cache available. To install the dependencies required for to use memcached
as a cache, run:

python3 -m pip install ".[cache]"

The Comics API is able to respond using JSON, XML, or several other formats.
To install the dependencies required to provide all possible response
formats, run:

python3 -m pip install ".[api]

Development dependencies

If you’re setting up Comics for development, you should install Poetry [https://python-poetry.org/], and in the Comics git repository, run:

poetry install

This installs both the minimum dependencies as described above and all extra
dependencies required for development.

Bootstrapping

Once you’ve installed Comics, you need to create the database and create the
initial users and comics.

To get Comics to a state useful for testing of new crawlers and personal
usage, the following steps are all that is needed.

Create database

A file-based SQLite database will be used, unless you have configured another
database, like PostgreSQL.

To create the database and database schema, open a terminal, go to top level
directory in your checkout of the Comics repo, where you’ll find the file
manage.py, and run:

python manage.py migrate

Create first user

When migrate has finished, create a superuser by running:

python manage.py createsuperuser

Add comics

Then we need to seed the database with information on what comics to crawl.
E.g. to add the XKCD comic from comics/comics/xkcd.py, run:

python manage.py comics_addcomics -c xkcd

Optionally, you can add all available active comics to the database:

python manage.py comics_addcomics -c all

Get comic releases

Next, we need to get hold of some comic releases, so we will crawl the web for
them. This will get today’s releases for all added comics:

python manage.py comics_getreleases

To get the release for a specific added comics, you can filter with
--comic or -c:

python manage.py comics_getreleases -c xkcd

To get releases for a range of days, you can specify a date range with
--from or -f and --to or -t. Both
defaults to today, so you can leave the end of the range out:

python manage.py comics_getreleases -f 2011-11-11

Development web server

Finally, to be able to browse the comic releases we have aggregated, start the
Django development web server by running:

python manage.py runserver

If you now point your web browser at http://localhost:8000/ you will be able to
browse all available comics. If you created a superuser above, you can log in
at http://localhost:8000/admin/ to do simple administration tasks, like
removing comics or releases.

More options

All of the manage.py commands got more options available. Add the
--help argument to any of the commands to get a full listing of the
available options.

Deployment

The following example documents one way to deploy Comics. As Comics is a
standard Django project with an additional batch job for crawling, it may be
deployed in just about any way a Django project may be deployed. Please refer
to Django’s deployment documentation [https://docs.djangoproject.com/en/dev/howto/deployment/] for further
details.

In the following examples we assume that we are deploying Comics at
http://comics.example.com/, using Nginx, Gunicorn, and PostgreSQL. The Django
application and batch job is both running as the user comics-user. The
static media files, like comic images, are served from
http://comics.example.com/static/.

Database

Comics should theoretically work with any database supported by Django.
Though, development is mostly done on SQLite and PostgreSQL. For production
use, PostgreSQL is the recommended choice.

Note

If you are going to use SQLite in a deployment with Nginx and so on, you
need to ensure that the user the web server will be running as has write
access to the directory the SQLite database file is located in.

Example .env

In the following examples, we assume the Comics source code is unpacked at
/srv/comics.example.com/app/comics.

To change settings, you should not change the settings files shipped with
Comics, but instead override the settings using environment variables, or by
creating a file named /srv/comics.example.com/app/comics/.env. You must
at least set DJANGO_SECRET_KEY and database settings, unless you use
SQLite.

A full set of environment variables for a production deployment may look like
this:

DJANGO_SECRET_KEY=replace-this-with-a-long-random-value
DJANGO_ADMIN=comics@example.com
DJANGO_DEFAULT_FROM_EMAIL=comics@example.com

DJANGO_MEDIA_ROOT=/srv/comics.example.com/htdocs/static/media/
DJANGO_MEDIA_URL=https://comics.example.com/static/media/
DJANGO_STATIC_ROOT=/srv/comics.example.com/htdocs/static/
DJANGO_STATIC_URL=https://comics.example.com/static/

DATABASE_URL=postgres://comics:topsecret-password@localhost:5432/comics

CACHE_URL=memcache://127.0.0.1:11211

COMICS_LOG_FILENAME=/srv/comics.example.com/app/log/comics.log
COMICS_SITE_TITLE=comics.example.com
COMICS_INVITE_MODE=true

Of course, you should change most, if not all, of these settings to fit your own
installation.

If your are not running a memcached server, remove CACHE_URL variable
from your environment. Comics does not require a cache, but responses are
significantly faster with a cache available.

Example Gunicorn setup

Comics is a WSGI app and can be run with any WSGI server, for example
Gunicorn. Gunicorn is a Python program, so you can simply install it in
Comics’ own virtualenv:

source /srv/comics.example.com/app/venv/bin/activate
python -m pip install gunicorn

Then you need to start Gunicorn, for example with a systemd service:

[Unit]
Description=gunicorn-comics
After=network.target

[Install]
WantedBy=multi-user.target

[Service]
User=comics-user
Group=comics-user
Restart=always

ExecStart=/srv/comics.example.com/app/venv/bin/gunicorn --bind=127.0.0.1:8000 --workers=9 --access-logfile=/srv/comics.example.com/htlogs/gunicorn-access.log --error-logfile=/srv/comics.example.com/htlogs/gunicorn-error.log comics.wsgi
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID

WorkingDirectory=/srv/comics.example.com/app/comics
Environment=PYTHONPATH='/srv/comics.example.com/app/comics'

PrivateTmp=true

Example Nginx vhost

The web server Nginx can be used in front of Gunicorn to terminate HTTPS
connections and effectively serve static files.

The following is an example of a complete Nginx vhost:

server {
 server_name comics.example.com;
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 access_log /srv/comics.example.com/htlogs/nginx-access.log;
 error_log /srv/comics.example.com/htlogs/nginx-error.log error;

 ssl_certificate /etc/letsencrypt/live/comics.example.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/comics.example.com/privkey.pem;

 location /static {
 root /srv/comics.example.com/htdocs;
 expires max;

 location ~* \/fonts\/ {
 add_header Access-Control-Allow-Origin *;
 }
 }

 location / {
 proxy_pass_header Server;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Scheme $scheme;
 proxy_connect_timeout 10;
 proxy_read_timeout 30;
 proxy_pass http://localhost:8000/;
 }
}

For details, please refer to the documentation of the Nginx [http://nginx.org/en/docs/] project.

Collecting static files

When you’re not running in development mode, you’ll need to collect the static
files from all apps into the STATIC_ROOT. To do this, run:

python manage.py collectstatic

You have to rerun this command every time you deploy changes to graphics, CSS
and JavaScript. For more details, see the Django documentation on staticfiles [https://docs.djangoproject.com/en/1.11/howto/static-files/].

Example cronjob

To get new comics releases, you should run comics_getreleases regularly. In
addition, you should run clearsessions to clear expired user sessions.
One way is to use cron e.g. by placing the following in
/etc/cron.d/comics:

MAILTO=comics@example.com
PYTHONPATH=/srv/comics.example.com/app/comics
1 * * * * comics-user python /srv/comics.example.com/app/comics/manage.py comics_getreleases -v0
1 3 * * * comics-user python /srv/comics.example.com/app/comics/manage.py clearsessions -v0

If you have installed Comics’ dependencies in a virtualenv instead of
globally, the cronjob must also activate the virtualenv. This can be done by
using the python interpreter from the virtualenv:

MAILTO=comics@example.com
PYTHONPATH=/srv/comics.example.com/app/comics
1 * * * * comics-user /srv/comics.example.com/app/venv/bin/python /srv/comics.example.com/app/comics/manage.py comics_getreleases -v0
1 3 * * * comics-user /srv/comics.example.com/app/venv/bin/python /srv/comics.example.com/app/comics/manage.py clearsessions -v0

By setting MAILTO any exceptions raised by the comic crawlers will be sent
by mail to the given mail address. 1 * * * * specifies that the command
should be run 1 minute past every hour.

Creating crawlers

For each comic Comics is aggregating, we need to create a crawler. At the
time of writing, more than 200 crawlers are available in the
comics/comics/ directory. They serve as a great source for learning how
to write new crawlers for Comics.

A crawler example

The crawlers are split in two separate pieces. The ComicData part
contains meta data about the comic used for display at the web site. The
Crawler part contains properties needed for crawling and the crawler
implementation itself.

from comics.aggregator.crawler import CrawlerBase, CrawlerImage
from comics.core.comic_data import ComicDataBase

class ComicData(ComicDataBase):
 name = 'xkcd'
 language = 'en'
 url = 'https://www.xkcd.com/'
 start_date = '2005-05-29'
 rights = 'Randall Munroe, CC BY-NC 2.5'

class Crawler(CrawlerBase):
 history_capable_days = 10
 schedule = 'Mo,We,Fr'
 time_zone = 'US/Eastern'

 def crawl(self, pub_date):
 feed = self.parse_feed('https://www.xkcd.com/rss.xml')
 for entry in feed.for_date(pub_date):
 url = entry.summary.src('img[src*="/comics/"]')
 title = entry.title
 text = entry.summary.alt('img[src*="/comics/"]')
 return CrawlerImage(url, title, text)

The ComicData class fields

	
class ComicData

	
	
name

	Required. A string with the name of the comic.

	
url

	Required. A string with the URL of the comic’s web page.

	
active

	Optional. Wheter or not this comic is still being crawled. Defaults
to True.

	
start_date

	Optional. The first date the comic was published at.

	
end_date

	Optional. The last date the comic was published at if it is
discontinued.

	
rights

	Optional. Name of the author and the comic’s license if available.

The Crawler class fields

	
class Crawler

	
	
history_capable_date

	Optional. Date of oldest release available for crawling.

Provide this or Crawler.history_capable_days. If both are
present, this one will have precedence.

Example: '2008-03-08'.

	
history_capable_days

	Optional. Number of days a release is available for crawling.

Provide this or Crawler.history_capable_date.

Example: 32.

	
schedule

	Optional. On what weekdays the comic is published.

Example: 'Mo,We,Fr' or 'Mo,Tu,We,Th,Fr,Sa,Su'.

	
time_zone

	Optional. In approximately what time zone the comic is published.

Example: Europe/Oslo or US/Eastern.

See the IANA timezone database [http://en.wikipedia.org/wiki/List_of_tz_database_time_zones] for a
list of possible values.

	
multiple_releases_per_day

	Optional. Default: False. Whether to allow multiple releases per
day.

Example: True or False.

	
has_rerun_releases

	Optional. Default: False. Whether the comic reruns old
images as new releases.

Example: True` or False`.

	
headers

	Optional. Default: None. Any HTTP headers to send with any URI
request for values.

Useful if you’re pulling comics from a site that checks either the
Referer or User-Agent. If you can view the comic using your
browser but not when using your loader for identical URLs, try setting
the Referer to be http://www.example.com/ or set the
User-Agent to be Mozilla/4.0 (compatible; MSIE 8.0; Windows NT
5.1; Trident/4.0).

Example: {'Referer': 'http://www.example.com/', 'Host':
'http://www.example.com/'}

The Crawler.crawl() method

The Crawler.crawl() is where the real work is going on. To start with
an example, let’s look at XKCD’s Crawler.crawl() method:

def crawl(self, pub_date):
 feed = self.parse_feed('http://www.xkcd.com/rss.xml')
 for entry in feed.for_date(pub_date):
 url = entry.summary.src('img[src*="/comics/"]')
 title = entry.title
 text = entry.summary.alt('img[src*="/comics/"]')
 return CrawlerImage(url, title, text)

Arguments and return values

The Crawler.crawl() method takes a single argument, pub_date, which
is a datetime.date object for the date the crawler is currently
crawling. The goal of the method is to return a CrawlerImage object
containing at least the URL of the image for pub_date and optionally a
title and text accompanying the image. CrawlerImage’s
signature is:

CrawlerImage(url, title=None, text=None)

This means that you must always supply an URL, and that you can supply a
text without a title. The following are all valid ways to create a
CrawlerImage:

CrawlerImage(url)
CrawlerImage(url, title)
CrawlerImage(url, title, text)
CrawlerImage(url, text=text)

For some crawlers, this is all you need. If the image URL is predictable and
based upon the pub_date in some way, just create the URL with the help
of Python’s strftime documentation [https://docs.python.org/2.7/library/datetime.html#strftime-behavior], and
return it wrapped in a CrawlerImage:

def crawl(self, pub_date):
 url = 'http://www.example.com/comics/%s.png' % (
 pub_date.strftime('%Y-%m-%d'),
)
 return CrawlerImage(url)

Though, for most crawlers, some interaction with RSS or Atom feeds or web pages
are needed. For this a web parser and a feed parser are provided.

Returning multiple images for a single comic release

Some comics got releases with multiple images, and thus returning a single
CrawlerImage will not be enough for you. For situations like these,
Comics lets you return a list of CrawlerImage objects from
Crawler.crawl(). The list should be ordered in the same way as the
comic is meant to be read, with the first frame as the first element in the
list. If the comic release got a title, add it to the first
CrawlerImage object, and let the title field stay empty on the
rest of the list elements. The same applies for the text field, unless each
image actually got a different title or text string.

The following is an example of a Crawler.crawl() method which returns
multiple images. It adds a title to the first list element, and different
text to all of the elements.

def crawl(self, pub_date):
 feed = self.parse_feed('http://feeds.feedburner.com/Pidjin')
 for entry in feed.for_date(pub_date):
 result = []
 for i in range(1, 10):
 url = entry.content0.src('img[src$="000%d.jpg"]' % i)
 text = entry.content0.title('img[src$="000%d.jpg"]' % i)
 if url and text:
 result.append(CrawlerImage(url, text=text))
 if result:
 result[0].title = entry.title
 return result

LxmlParser – Parsing web pages and HTML

The web parser, internally known as LxmlParser, uses CSS selectors to
extract content from HTML. For a primer on CSS selectors, see
Matching HTML elements using CSS selectors.

The web parser is accessed through the Crawler.parse_page() method:

def crawl(self, pub_date):
 page_url = 'http://ars.userfriendly.org/cartoons/?id=%s' % (
 pub_date.strftime('%Y%m%d'),)
 page = self.parse_page(page_url)
 url = page.src('img[alt^="Strip for"]')
 return CrawlerImage(url)

This is a common pattern for crawlers. Another common patterns is to use a feed
to find the web page URL for the given date, then parse that web page to find
the image URL.

LxmlParser API

The available methods only require a CSS selector, selector, to match tags.
In the event that the selector doesn’t match any elements, default will be
returned.

If the selector matches multiple elements, one of two things will happen:

	If allow_multiple is False, a MultipleElementsReturned
exception is raised.

	If allow_multiple is True, a list of zero or more elements is
returned with all of the elements matching selector.

	
class comics.aggregator.lxmlparser.LxmlParser

	
	
text(selector[, default=None, allow_multiple=False])

	Returns the text contained by the element matching selector.

	
src(selector[, default=None, allow_multiple=False])

	Returns the src attribute of the element matching selector.

The web parser automatically expands relative URLs in the source, like
/comics/2008-04-13.png to a full URL like
http://www.example.com/2008-04-13.png, so you do not need to think
about that.

	
alt(selector[, default=None, allow_multiple=False])

	Returns the alt attribute of the element matching selector.

	
title(selector[, default=None, allow_multiple=False])

	Returns the title attribute of the element matching selector.

	
href(selector[, default=None, allow_multiple=False])

	Returns the href attribute of the element matching selector.

	
value(selector[, default=None, allow_multiple=False])

	Returns the value attribute of the element matching selector.

	
id(selector[, default=None, allow_multiple=False])

	Returns the id attribute of the element matching selector.

	
remove(selector)

	Remove the elements matching selector from the parsed document.

Matching HTML elements using CSS selectors

Both web page and feed parsing uses CSS selectors to extract the interesting
strings from HTML. CSS selectors are those normally simple strings you use in
CSS style sheets to select what elements of your web page the CSS declarations
should be applied to.

In the following example h1 a is the selector. It matches all a
elements contained in h1 elements. The rule to be applied to the matching
elements is color: red;.

h1 a { color: red; }

Similarly class="foo" and id="bar" in HTML may be used in CSS
selectors. The following CSS example would color all h1 headers with the
class foo red, and all elements with the ID bar which is contained in
h1 elements would be colored blue.

h1.foo { color: red; }
h1 #bar { color: blue; }

In CSS3, the power of CSS selectors have been greatly increased by the addition
of matching by the content of elements’ attributes. To match all img
elements with a src attribute starting with http://www.example.com/
simply write:

img[src^="http://www.example.com/"]

Or, to match all img elements whose src attribute ends in .jpg:

img[src$=".jpg"]

Or, img elements whose src attribute contains /comics/:

img[src*="/comics/"]

Or, img elements whose alt attribute is Today's comic:

img[alt="Today's comic"]

For further details on CSS selectors in general, please refer to
http://css.maxdesign.com.au/selectutorial/.

FeedParser – Parsing feeds

The feed parser is initialized with a feed URL passed to
Crawler.parse_feed(), just like the web parser is initialized with a web
page URL:

def crawl(pub_date):
 ...
 feed = self.parse_feed('http://www.xkcd.com/rss.xml')
 ...

FeedParser API

The feed object provides two methods which both returns feed elements:
FeedParser.for_date() and FeedParser.all(). Typically, a crawler
uses FeedParser.for_date() and loops over all entries it returns to find
the image URL:

for entry in feed.for_date(pub_date):
 # parsing comes here
 return CrawlerImage(url)

	
class comics.aggregator.feedparser.FeedParser

	
	
for_date(date)

	Returns all feed elements published at date.

	
all()

	Returns all feed elements.

Feed Entry API

The Comics feed parser is really a combination of the popular feedparser [http://www.feedparser.org/] library and LxmlParser. It can do anything feedparser can
do, and in addition you can use the LxmlParser methods on feed fields which
contains HTML, like Entry.summary and Entry.content0.

	
class comics.aggregator.feedparser.Entry

	
	
summary

	This is the most frequently used entry field which supports HTML
parsing with the LxmlParser methods.

Example usage:

url = entry.summary.src('img')
title = entry.summary.alt('img')

	
content0

	This is the same as feedparser’s content[0].value field, but with
LxmlParser methods
available. For some crawlers, this is where the interesting stuff is
found.

	
html(string)

	Wrap string in a LxmlParser.

If you need to parse HTML in any other fields than summary and
content0, you can apply the html(string) method on the
field, like it is applied on a feed entry’s title field here:

title = entry.html(entry.title).text('h1')

	
tags

	List of tags associated with the entry.

Testing your new crawler

When the first version of you crawler is complete, it’s time to test it.

The file name is important, as it is used as the comic’s slug. This means that
it must be unique within the Comics installation, and that it is used in the
URLs Comics will serve the comic at. For this example, we call the crawler
file foo.py. The file must be placed in the comics/comics/
directory, and will be available in Python as comics.comics.foo.

Loading ComicData for your new comic

For Comics to know about your new crawler, you need to load the comic meta
data into Comics’ database. To do so, we run the comics_addcomics
command:

python manage.py comics_addcomics -c foo

If you do any changes to the ComicData class of any crawler, you must
rerun comics_addcomics to update the database representation of the comic.

Running the crawler

When comics_addcomics has created a comics.core.models.Comic
instance for the new crawler, you may use your new crawler to fetch the comic’s
release for the current date by running:

python manage.py comics_getreleases -c foo

If you want to get comics releases for more than the current day, you may
specify a date range to crawl, like:

python manage.py comics_getreleases -c foo -f 2009-01-01 -t 2009-03-31

The date range will automatically be adjusted to the crawlers history
capability. You may also get comics for a date range without a specific end.
In which case, the current date will be used instead:

python manage.py comics_getreleases -c foo -f 2009-01-01

If your new crawler is not working properly, you may add -v2 to the command
to turn on full debug output:

python manage.py comics_getreleases -c foo -v2

For a full overview of comics_getreleases options, run:

python manage.py comics_getreleases --help

Submitting your new crawler for inclusion in Comics

When your crawler is working properly, you may submit it for inclusion in
Comics. You should fork Comics at GitHub [http://github.com/jodal/comics], commit your new crawler to your own fork,
and send me a pull request through GitHub.

All contributions must be granted under the same license as Comics itself.

Web API

Comics comes with a web API that exposes all useful data about the
current user, the user’s comics subscriptions, comics, comic releases, and
comic images. The web API may be used to e.g. create iOS/Android apps or
alternative comics browsers, while leaving the comics crawling job to a
Comics instance.

Please make any apps using this API generic, so that they can be used with any
Comics instance as the backend. In other words, when starting your app, let
the end user enter the hostname of the Comics instance, in addition to his
secret key or email/password pair.

Authentication

The web API is only available for users with an active user account on the
Comics instance. The user must authenticate himself using the same
secret key as is used to access comic feeds. The key can be found in the
account section of the Comics instance.

The secret key can be provided in one of two ways:

	Using a HTTP GET parameter named key, i.e. as part of the URL. Example:

http://example.com/api/v1/users/?key=76acdcdf16ae4e12becb00d09a9d9456

	Using the Authorization HTTP header. Example:

Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Get secret key using email and password

If it’s inconvenient for the end user to enter the secret key in your user
interface–on mobile phones copy-pasting the API key from the Comics
instance’s account page is time consuming at best–you may retrieve the secret
key on behalf of the end user by following steps:

	Ask the end user to provide:

	the Comics instance’s base URL (e.g. example.com)

	the email address the end user have registered on the Comics instance

	the password the end user have registered on the Comics instance

	Use the provided information to retrieve the Users resource from the
API. Authenticate using Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication] with the email
address as username and the password as password. This does only work for
the Users resource.

	In the response from the Users resource, you’ll find the end user’s
secret key. You should cache the secret key in your application and use it
for all future requests to the API on behalf of this user. The end user’s
password should be thrown away at this point.

Response format

You can specify what response format you prefer in one of two ways:

	Using a HTTP GET parameter named format, i.e. as part of the URL.
Examples:

Returns JSON
http://example.com/api/v1/?format=json

Returns JSONP with function name 'callback'
http://example.com/api/v1/?format=jsonp

Returns JSONP with function name 'foo'
http://example.com/api/v1/?format=jsonp&callback=foo

Returns JSONP with function name 'foo'
http://example.com/api/v1/?callback=foo

Returns XML
http://example.com/api/v1/?format=xml

Returns YAML
http://example.com/api/v1/?format=yaml

Returns Apple binary plist
http://example.com/api/v1/?format=plist

	Using the Accept HTTP header. Examples:

Returns JSON
Accept: application/json

Returns JSONP with function name 'callback'
Accept: text/javascript

Returns XML
Accept: application/xml

Returns YAML
Accept: text/yaml

Returns Apple binary plist
Accept: application/x-plist

JSON and JSONP are always supported. Other formats like XML, YAML, and Apple
binary plists (bplist) may be available if the Comics instance got the
additional dependencies required by the format installed.

If you run a Comics instance yourself, and want support for more response
formats, check out Tastypie’s serialization docs [https://django-tastypie.readthedocs.io/en/latest/serialization.html] for
details on what you need to install.

Pagination

All the resource collections support pagination. The pagination parameters that
may be passed as GET [https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1] arguments are:

	limit – max number of returned resources per response. Defaults to 20.
Use 0 to remove the limit and request all objects in a single response.

	offset – offset into the full collection of resources. Defaults to 0.

The meta section of the collection responses include the current pagination
parameters, and–if available–links to the previous and next page, and the
total count of resources matching the query:

	next – link to the next page of the collection, if available

	previous – link to the previous page of the collection, if available

	total_count – total number of resources in the collection, given the
current filters.

Resources

Root resource

	
GET /api/v1/

	Lists all available resources, and URLs for their schemas.

Users resource

	
GET /api/v1/users/

	List of all authenticated users. Not surprisingly, it always has a single result.

Example request using secret key

GET /api/v1/users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example request using Basic Authentication

This is the only resource that also accepts Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication], using
the user’s email address and password. Use the secret key from the response
for authenticating all future requests to the API.

GET /api/v1/users/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Basic YWxpY2VAZXhhbXBsZS5jb206c2VjcmV0

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "date_joined": "2012-04-30T18:39:59+00:00",
 "email": "alice@example.com",
 "last_login": "2012-06-09T23:09:54.312109+00:00",
 "resource_uri": "/api/v1/users/1/",
 "secret_key": "76acdcdf16ae4e12becb00d09a9d9456"
 }
]
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

Comics resource

	
GET /api/v1/comics/

	Lists all available comics. Supports Pagination.

Example request

GET /api/v1/comics/?slug=xkcd HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "active": true,
 "added": "0001-01-01T00:00:00+00:00",
 "end_date": null,
 "id": "18",
 "language": "en",
 "name": "xkcd",
 "resource_uri": "/api/v1/comics/18/",
 "rights": "Randall Munroe, CC BY-NC 2.5",
 "slug": "xkcd",
 "start_date": "2005-05-29",
 "url": "http://www.xkcd.com/"
 }
]
}

	Query Parameters:

	
	subscribed – only include comics the authorized user is subscribed to
if true, or unsubscribed to if false

	active – only include active comics (true) or inactive comics
(false)

	language – only include comics with the exact language, e.g. en

	name – only include comics with matching name. Queries like
name__startswith=Dilbert and name__iexact=XkcD are supported.

	slug – only include comics with matching slug. Queries like
slug__contains=kc and slug__endswith=db are supported.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – bad request, e.g. unknown filter used

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	
GET /api/v1/comics/(int: comic_id)/

	Show a specific comic looked up by comic ID.

Example request

GET /api/v1/comics/18/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "active": true,
 "added": "0001-01-01T00:00:00+00:00",
 "end_date": null,
 "id": "18",
 "language": "en",
 "name": "xkcd",
 "resource_uri": "/api/v1/comics/18/",
 "rights": "Randall Munroe, CC BY-NC 2.5",
 "slug": "xkcd",
 "start_date": "2005-05-29",
 "url": "http://www.xkcd.com/"
}

	Parameters:

	
	comic_id – the comic ID

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – comic not found

Releases resource

	
GET /api/v1/releases/

	Lists all available releases, last fetched first. Supports
Pagination.

Example request

GET /api/v1/releases/?comic__slug=xkcd&limit=2 HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "meta": {
 "limit": 2,
 "next": "/api/v1/releases/?limit=2&key=76acdcdf16ae4e12becb00d09a9d9456&format=json&comic__slug=xkcd&offset=2",
 "offset": 0,
 "previous": null,
 "total_count": 1104
 },
 "objects": [
 {
 "comic": "/api/v1/comics/18/",
 "fetched": "2012-10-08T04:03:56.411028+00:00",
 "id": "147708",
 "images": [
 {
 "checksum": "605d9a6d415676a21ee286fe2b369f58db62c397bfdfa18710b96dcbbcc4df12",
 "fetched": "2012-10-08T04:03:56.406586+00:00",
 "file": "https://comics.example.com/static/media/xkcd/6/605d9a6d415676a21ee286fe2b369f58db62c397bfdfa18710b96dcbbcc4df12.png",
 "height": 365,
 "id": "151937",
 "resource_uri": "/api/v1/images/151937/",
 "text": "Facebook, Apple, and Google all got away with their monopolist power grabs because they don't have any 'S's in their names for critics to snarkily replace with '$'s.",
 "title": "Microsoft",
 "width": 278
 }
],
 "pub_date": "2012-10-08",
 "resource_uri": "/api/v1/releases/147708/"
 },
 {
 "comic": "/api/v1/comics/18/",
 "fetched": "2012-10-05T05:03:33.744355+00:00",
 "id": "147172",
 "images": [
 {
 "checksum": "6d1b67d3dc00d362ddb5b5e8f1c3f174926d2998ca497e8737ff8b74e7100997",
 "fetched": "2012-10-05T05:03:33.737231+00:00",
 "file": "https://comics.example.com/static/media/xkcd/6/6d1b67d3dc00d362ddb5b5e8f1c3f174926d2998ca497e8737ff8b74e7100997.png",
 "height": 254,
 "id": "151394",
 "resource_uri": "/api/v1/images/151394/",
 "text": "According to my mom, my first word was (looking up at the sky) 'Wow!'",
 "title": "My Sky",
 "width": 713
 }
],
 "pub_date": "2012-10-05",
 "resource_uri": "/api/v1/releases/147172/"
 }
]
}

	Query Parameters:

	
	subscribed – only include releases the authorized user is subscribed
to if true, or unsubscribed to if false

	comic – only include releases with matching comic. All filters on the
comic resource may be used, e.g. comic__slug=xkcd.

	images – only include releases with matching image. All filters on
the image resource may be used, e.g. images__height__gt=1000.

	pub_date – only include releases with pub_date matching. Date range
queries, like pub_date__year=2011 or
pub_date__gte=2011-01-01&pub_date__lte=2011-12-31, are supported.

	fetched – only include releases with fetched matching. Date range
queries are supported.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – bad request, e.g. unknown filter used

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	
GET /api/v1/releases/(int: release_id)/

	Show a specific release looked up by release ID.

Example request

GET /api/v1/releases/147708/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "comic": "/api/v1/comics/18/",
 "fetched": "2012-10-08T04:03:56.411028+00:00",
 "id": "147708",
 "images": [
 {
 "checksum": "605d9a6d415676a21ee286fe2b369f58db62c397bfdfa18710b96dcbbcc4df12",
 "fetched": "2012-10-08T04:03:56.406586+00:00",
 "file": "https://comics.example.com/static/media/xkcd/6/605d9a6d415676a21ee286fe2b369f58db62c397bfdfa18710b96dcbbcc4df12.png",
 "height": 365,
 "id": "151937",
 "resource_uri": "/api/v1/images/151937/",
 "text": "Facebook, Apple, and Google all got away with their monopolist power grabs because they don't have any 'S's in their names for critics to snarkily replace with '$'s.",
 "title": "Microsoft",
 "width": 278
 }
],
 "pub_date": "2012-10-08",
 "resource_uri": "/api/v1/releases/147708/"
}

	Parameters:

	
	release_id – the release ID

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – release not found

Images resource

You will probably not use the images resource, as the images are available
through the releases resource as well. The images resource is included to
give the images referenced to by releases their own canonical URLs.

	
GET /api/v1/images/

	Lists all images. Supports Pagination.

	Query Parameters:

	
	fetched – only include images with fetched matching. Date range
queries are supported.

	title – only include images with matching title. Queries like
title__icontains=cake are supported.

	text – only include images with matching text. Queries like
text__icontains=lies are supported.

	height – only include images with height matching. Integer range
queries, like height__gt=1000 are supported.

	width – only include images with width matching. Integer range
queries are supported.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – bad request, e.g. unknown filter used

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	
GET /api/v1/images/(int: image_id)/

	Show a specific image looked up by image ID.

	Parameters:

	
	image_id – the image ID

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – image not found

Subscriptions resource

	
GET /api/v1/subscriptions/

	List all the authenticated user’s comic subscriptions. Supports
Pagination.

Example request

GET /api/v1/subscriptions/?comic__slug=xkcd HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "comic": "/api/v1/comics/18/",
 "id": "2",
 "resource_uri": "/api/v1/subscriptions/2/"
 }
]
}

	Query Parameters:

	
	comic – only include releases with matching comic. All filters on the
comic resource may be used, e.g. comic__slug=xkcd.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	
POST /api/v1/subscriptions/

	Subscribe the authenticated user to the given comic.

Example request

Note that the request specifies the Content-Type since it includes a
body with JSON.

POST /api/v1/subscriptions/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456
Content-Type: application/json

{
 "comic": "/api/v1/comics/18/"
}

Example response

HTTP/1.1 201 CREATED
Content-Type: text/html; charset=utf-8
Location: https://example.com/api/v1/subscriptions/4/

	Status Codes:

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – no error, object was created, see Location header

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – if the request cannot be processed, e.g. because the
subscription already exists

	
PATCH /api/v1/subscriptions/

	Do bulk updates of subscriptions: e.g. create and delete multiple
subscriptions with a single request.

If any part of the bulk update fails, all changes are rolled back.

Example request

PATCH /api/v1/subscriptions/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456
Content-Type: application/json

{
 "objects": [
 {
 "comic": "/api/v1/comics/19/"
 },
 {
 "comic": "/api/v1/comics/20/"
 }
],
 "deleted_objects": [
 "/api/v1/subscriptions/4/",
 "/api/v1/subscriptions/5/"
]
}

Example response

HTTP/1.1 202 ACCEPTED
Content-Length: 0
Content-Type: text/html; charset=utf-8

	Status Codes:

	
	202 Accepted [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – no error, changes was accepted, use GET [https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1] to
see the changes

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – if the request cannot be processed, e.g. because a
subscription already exists

	
GET /api/v1/subscriptions/(int: subscription_id)/

	Show one of the authenticated user’s comic subscriptions looked up by
subscription ID.

Example request

GET /api/v1/subscriptions/2/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "comic": "/api/v1/comics/18/",
 "id": "2",
 "resource_uri": "/api/v1/subscriptions/2/"
}

	Parameters:

	
	subscription_id – the subscription ID

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – subscription not found

	
DELETE /api/v1/subscriptions/(int: subscription_id)/

	Unsubscribe the authenticated user from the given comic.

Example request

DELETE /api/v1/subscriptions/17/ HTTP/1.1
Host: example.com
Accept: application/json
Authorization: Key 76acdcdf16ae4e12becb00d09a9d9456

Example response

HTTP/1.1 204 NO CONTENT
Content-Length: 0
Content-Type: text/html; charset=utf-8

	Parameters:

	
	subscription_id – the subscription ID

	Status Codes:

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – no error, and no content returned

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – authentication/authorization failed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – subscription not found

Data model

Comics’ data model is quite simple:

	The comics.core app consists of three models;
Comic, Release, and
Image.

	The comics.accounts app adds a
UserProfile which add comic specific
fields to Django’s user model, including a mapping from the user to her
preferred comics.

[image: _images/data_model.png]

Database migrations

Changes to the data model are managed using Django’s database migrations [https://docs.djangoproject.com/en/1.11/topics/migrations/]. If you need to
change the models, please provide the needed migrations.

Updating diagram

The above data model diagram was generated using the Django app
django-extensions [https://github.com/django-extensions/django-extensions] and
the following command:

python manage.py graph_models \
 --output docs/_static/data_model.png \
 --group-models \
 core accounts

Development environment

Comics development is coordinated through GitHub [http://github.com/jodal/comics/].

Testing

Comics got some tests, but far from full test coverage. If you write new or
improved tests for Comics’ functionality it will be greatly appreciated

You can run the tests with pytest [https://docs.pytest.org/]:

pytest

To check test coverage, run with --cov:

pytest --cov

Code formatting

All code is autoformatted, and PRs will only be accepted if they are
formatted in the same way. To format code, use Black [https://black.readthedocs.io/]:

black .

Linting

All code should be lint free, and PRs will only be accepted if they pass
linting. To check the code for code quality issues, use flake8 [https://flake8.pycqa.org/]:

flake8

Run it all

To locally run all the same tests as GitHub Actions runs on each pull
request, use tox [https://tox.readthedocs.io/]:

tox

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/v1/	

 	
 	
 GET /api/v1/comics/	

 	
 	
 GET /api/v1/comics/(int:comic_id)/	

 	
 	
 GET /api/v1/images/	

 	
 	
 GET /api/v1/images/(int:image_id)/	

 	
 	
 GET /api/v1/releases/	

 	
 	
 GET /api/v1/releases/(int:release_id)/	

 	
 	
 GET /api/v1/subscriptions/	

 	
 	
 GET /api/v1/subscriptions/(int:subscription_id)/	

 	
 	
 GET /api/v1/users/	

 	
 	
 POST /api/v1/subscriptions/	

 	
 	
 DELETE /api/v1/subscriptions/(int:subscription_id)/	

 	
 	
 PATCH /api/v1/subscriptions/	

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 comics	

 	
 	
 comics.aggregator.feedparser	

 	
 	
 comics.aggregator.lxmlparser	

Index

 A
 | C
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | V

A

 	
 	active (ComicData attribute)

 	
 	all() (comics.aggregator.feedparser.FeedParser method)

 	alt() (comics.aggregator.lxmlparser.LxmlParser method)

C

 	
 	ComicData (built-in class)

 	
 comics.aggregator.feedparser

 	module

 	
 	
 comics.aggregator.lxmlparser

 	module

 	content0 (comics.aggregator.feedparser.Entry attribute)

 	Crawler (built-in class)

E

 	
 	end_date (ComicData attribute)

 	
 	Entry (class in comics.aggregator.feedparser)

F

 	
 	FeedParser (class in comics.aggregator.feedparser)

 	
 	for_date() (comics.aggregator.feedparser.FeedParser method)

H

 	
 	has_rerun_releases (Crawler attribute)

 	headers (Crawler attribute)

 	history_capable_date (Crawler attribute)

 	
 	history_capable_days (Crawler attribute)

 	href() (comics.aggregator.lxmlparser.LxmlParser method)

 	html() (comics.aggregator.feedparser.Entry method)

I

 	
 	id() (comics.aggregator.lxmlparser.LxmlParser method)

L

 	
 	LxmlParser (class in comics.aggregator.lxmlparser)

M

 	
 	
 module

 	comics.aggregator.feedparser

 	comics.aggregator.lxmlparser

 	
 	multiple_releases_per_day (Crawler attribute)

N

 	
 	name (ComicData attribute)

R

 	
 	remove() (comics.aggregator.lxmlparser.LxmlParser method)

 	
 	rights (ComicData attribute)

S

 	
 	schedule (Crawler attribute)

 	src() (comics.aggregator.lxmlparser.LxmlParser method)

 	
 	start_date (ComicData attribute)

 	summary (comics.aggregator.feedparser.Entry attribute)

T

 	
 	tags (comics.aggregator.feedparser.Entry attribute)

 	text() (comics.aggregator.lxmlparser.LxmlParser method)

 	
 	time_zone (Crawler attribute)

 	title() (comics.aggregator.lxmlparser.LxmlParser method)

U

 	
 	url (ComicData attribute)

V

 	
 	value() (comics.aggregator.lxmlparser.LxmlParser method)

 nav.xhtml

 Table of Contents

 		
 Comics

 		
 Installation

 		
 Get release

 		
 Software requirements

 		
 Minimum dependencies

 		
 Optional dependencies for real deployments

 		
 Development dependencies

 		
 Bootstrapping

 		
 Create database

 		
 Create first user

 		
 Add comics

 		
 Get comic releases

 		
 Development web server

 		
 More options

 		
 Deployment

 		
 Database

 		
 Example .env

 		
 Example Gunicorn setup

 		
 Example Nginx vhost

 		
 Collecting static files

 		
 Example cronjob

 		
 Creating crawlers

 		
 A crawler example

 		
 The ComicData class fields

 		
 ComicData

 		
 The Crawler class fields

 		
 Crawler

 		
 The Crawler.crawl() method

 		
 Arguments and return values

 		
 Returning multiple images for a single comic release

 		
 LxmlParser – Parsing web pages and HTML

 		
 LxmlParser API

 		
 Matching HTML elements using CSS selectors

 		
 FeedParser – Parsing feeds

 		
 FeedParser API

 		
 Feed Entry API

 		
 Testing your new crawler

 		
 Loading ComicData for your new comic

 		
 Running the crawler

 		
 Submitting your new crawler for inclusion in Comics

 		
 Web API

 		
 Authentication

 		
 Get secret key using email and password

 		
 Response format

 		
 Pagination

 		
 Resources

 		
 Root resource

 		
 Users resource

 		
 Comics resource

 		
 Releases resource

 		
 Images resource

 		
 Subscriptions resource

 		
 Data model

 		
 Database migrations

 		
 Updating diagram

 		
 Development environment

 		
 Testing

 		
 Code formatting

 		
 Linting

 		
 Run it all

_static/data_model.png
i
fetched
pub_date

comic (release)

comics.core

AutoField
ForeignKey (id)
DateTimeField
DateField

images (releases)

i AutoField
comic ForeignKey (id)
Charfield
DateTimeField

checksum
fetched
file Imagefield
height Integerfield
text TextField

title Charfield
width Integerfield

comic (image)

AutoField

active Booleanfield
added DateTimeField
end_date DateField
language Charfield
name Charfield
rights Charfield
siug StugField
start_date. DateField
ur URLField

Comic (subscription)

secret key

comics.accounts

Subscription
‘AutoFiela
ForeignKey (id)
ForeignKey (id)

userprofile (subscription)

AutoField
OneToOneField (id)
Charfield

user (comics_profile)

User

_images/data_model.png
i
fetched
pub_date

comic (release)

comics.core

AutoField
ForeignKey (id)
DateTimeField
DateField

images (releases)

i AutoField
comic ForeignKey (id)
Charfield
DateTimeField

checksum
fetched
file Imagefield
height Integerfield
text TextField

title Charfield
width Integerfield

comic (image)

AutoField

active Booleanfield
added DateTimeField
end_date DateField
language Charfield
name Charfield
rights Charfield
siug StugField
start_date. DateField
ur URLField

Comic (subscription)

secret key

comics.accounts

Subscription
‘AutoFiela
ForeignKey (id)
ForeignKey (id)

userprofile (subscription)

AutoField
OneToOneField (id)
Charfield

user (comics_profile)

User

_static/minus.png

_static/plus.png

_static/file.png

